
FF501 First-Year Project

Social Networks Information Retrieving and Analysis

Mining and Analysing Publicity of Operating

Systems on Social Networks

group 86a

Brian Pedersen <brped13@student.sdu.dk>
Morten Rovelt Hansen <mohan12@student.sdu.dk>
Apinayan Mohanathas <apmoh13@student.sdu.dk>

Supervisors:
Kaiji Chen

Li Su

June 5, 2014

1 Table Of Contents

Contents

1 Table Of Contents 1

2 Introduction 3
2.1 Problem Formulation . 3

3 Methods 4
3.1 Data Mining in general . 4

3.1.1 Twitter API . 5
3.2 Storing and Retrieving . 5

3.2.1 VPS-Server . 5
3.3 Mining Tweets . 5
3.4 About MongoDB and PyMongo 7
3.5 Storing Tweets in MongoDB 7
3.6 Pre-analysis . 8

3.6.1 How it works . 9
3.7 Analysis . 9

4 Results 10
4.1 Testing . 10
4.2 Features and Modeling . 10

4.2.1 Sentiment-Analysis . 10
4.2.2 Features from metadata 11
4.2.3 Weighting the features 11

4.3 Data Collection . 12
4.3.1 Distribution of keywords 13
4.3.2 Distribution of keywords over 5 day period 14
4.3.3 Total scores . 16
4.3.4 Average score per tweet 17
4.3.5 Average Tweet score over time 19

5 Conclusion 20

6 Future work and Improvement 21

1

Abstract

In our society a lot of products are bought on a daily basis. The companies
that advertise and sell these products, often have little clue on how their
products and services are received by their customers, and how their experi-
ences with the products and services evolve. This is something businesses are
commonly trying to get an idea of, by generating surveys for their customers
and reading reviews. Many websites gives consumers the possibility to ex-
press themselves about their experiences with certain products or businesses,
but the reviews and scores generated from these websites might be doubtful,
as consumers often only visit these websites due to more extreme cases, e.g.
a very positive or very negative experience. Many users use Twitter to write
about their daily life, including the purchase of a new product, but also to
proclaim their feelings for a certain company or product.

In this report we're taking a look at how data from Twitter can deter-
mine the publicity and popularity of three operating systems. The methods
described include every aspect from the collection of data from Twitter and
the creation of a usable model to analysis of the data itself.

Twitter is a social networking and micro-blogging website, where people
can post messages of a maximum of 140 characters per post, for their followers
to see. These posts are called tweets, and the meta data stored within these
messages, or tweets, will be the main data source used in this study.

2

2 Introduction

The goal for the project is to give an idea on how data from Twitter, or
other social networks, can be used to �gure out the publicity and popularity
of one or several products, or businesses. Because of the limited time in the
making of this project, it was decided that we would look into the publicity
and popularity of operating systems. This choice was made, since many
Twitter users tweet about operating systems, and therefore it would be easy
to collect data on the subject on the limited time. However the steps made
in the making of this study is made with the original idea in mind; that it
should also be possible to use our model on products or businesses.
One of the problems doing this, will be what happens to a company or
product in the timespan we do the analysis. As an example, if a major
scandal occur in a company, the rating will most likely be worse, than if they
just released a very good product. Everything that happens in the company
have a chance of in�uencing the rating drastically, if the analysis is done over
a short period of time. Another parameter for it is the user who posted, e.g.
his/her number of followers, count of followings and the number of time the
tweet was favorited and retweeted.

2.1 Problem Formulation

By mining data in tweets on Twitter, we can do an analysis on the data to
show a rating on a product or company, that would be similar or better to
what other ratings made by other sites or with other methods would be.

By gathering speci�c tweets on keywords de�ning the product, the analy-
sis will be more accurate on what the product publicity and popularity really
is, based on real users, rather than looking at user reviews.

To get the right parameters for the modeling, �rst o� is the keywords on
the raw data, namely tweets and their metadata. This ensures we only get
the data that mentions the speci�ed product or company.

Based on Twitters Streaming API we gather information in a Python1

script running on our cloud computer to store the tweets live. From here
we take the data gathered and put it in our database, then run it through
analysis using our mathematical model and parameters.

The output here will be the goal of the project, an overall customer
analysis with a rating based on public opinions from Twitter.

1Python programming language

3

3 Methods

Overall, methods in data mining is all about getting the data you want, using
the tools and skills at your disposal.

First o�, you have to select what it really is you want to �nd. For that
you have to pick a subject you want to analyse. For our matter, we picked
operating systems but the choices are endless, looking at what data you can
get from the Internet.

You could look at a smaller group of things, one with more keywords or
less, but given the time we got to collect data, Operating Systems was a good
choice, because we were able to get a reasonable amount of data, withing a
relatively short period of time. From here all the data have to be stored,
and then processed through various methods, mentioned later to get a better
look at the overall becoming of the model.

When the data is processed and evaluated through analysis the results
can �nally be deployed.

3.1 Data Mining in general

Data mining in general is all about looking at big datasets, and �nding
patterns using statistics, keywords, analysis and machine learning.

When looking at it the overall goal, it is to extract the right information,
and be able to analyse it and narrow it all down to get the best out of the
collected data. There is a lot of complexity looking at the raw data, but the
trick is to sort out all the unwanted data.

There's a lot of methods to be used for data mining, most of them is
very e�cient. The term datamining have been around for very long, but the
methods used today is a lot more complex and faster. Today's datasets are
usually very large, and hard to narrow down. For getting the related data you
want and get rid of all the "noise", data cleaning is used. This gets rid of all
the unrelated, hence unwanted, data. After that a more productive approach
is taken, looking at what is really wanted from the data, and sorting out the
unwanted data. At last running it through a model can help get analyzable
results from the data.

4

3.1.1 Twitter API

The Twitter Streaming API makes it possible to sample around one percent
of tweets being sent at the moment in real-time. Even though the text in a
tweet only makes up 140 bytes there is almost 5 kilobytes of metadata in a
tweet sampled through the API. The metadata can be about the tweet, the
user and the retweeting user. Because the Streaming API is only allowing
sampling in real-time we chose not to use the completely new and original
tweets since they haven't had time to get retweets and favorites. But the
Streaming API is also sampling retweets in real-time and these have had
time to get favorited and retweeted.

We used a Python module named Twitter which functions as a wrapper
around the the Twitter API. Using this we could avoid dealing with raw
HTTPS connections and API calls. In addition the package make it possible
to get a tweet as a dictionary, a native Python data type.

3.2 Storing and Retrieving

Since it would be unpractical to have our own computer turned on over the
span of several days to sample tweets we have had to use a Virtual Private
Server. We accessed the server through SSH which allows us to run terminal
commands on the remote server.

3.2.1 VPS-Server

A Virtual-Private-Server is a service used for projects like this. Its a physical
other machine you rent, to get a server that is active at all times so you
dont have to have your own computer running. As we are using the Twitter
Streaming-API, this is necessary to have, as it would'nt be e�cient to have
it running on our own computers. The VPS gives a lot of advantages, as we
can have it running on a script collecting the data wanted, 24/7 without any
interruptions, only the boundaries of the API from Twitter itself.

3.3 Mining Tweets

The mining was handled by a Python script, which connected to a Twitter
Stream through the Twitter API.

Because of problems at the beginning of our mining phase, our mining
script is not sending the tweets directly to MongoDB, but instead saving the
Tweets into text �les.

5

The script starts by connecting to the Twitter API through OAuth. Af-
terwards, it gets a live stream from Twitter, which �lters the stream to only
give us the Tweets which contains the keywords, and only Tweets in English.

We came up with saving the Tweets in piles of 5000 Tweets, meaning that
the mining script saves one Tweet per line in a text �le. When 5000 Tweets
is reached, it automatically creates a new �le and saves the next 5000 Tweets
in that �le.

This was an intended design choice. We were concerned of the possibility
of suddenly corrupting all of our collected data if we had simply saved all
our data to a single �le. If something wrong would happen, either by human
mistake, or an error in the Streaming API, there was a slight chance that
this could corrupt all data in the �le. Another possibility could have been
saving each Tweet in its own �le, but this could also have led to problems
after creating hundred of thousands of �les, since some �le systems have a
limit on how many �les is allowed per directory.

By using the algorithm below, if anything would go wrong or get cor-
rupted, it would most likely only be the �le the mining script was currently
working on, meaning that a maximum of 5000 Tweets would get corrupted,
which is clearly better than our whole dataset.

1 file_number = 0

2 tweet_number = 0

3

4 foreach (Tweet from Twitter Stream) {

5 if(tweet_number is zero or dividable by 5000) {

6 open a new file

7 file_number + 1

8 }

9 write Tweet to file

10 }

More formally, the script saves tweets to a �le, then closes the current �le
and opens a new �le to write to if

Number of Tweets (mod 5000) = 0

6

3.4 About MongoDB and PyMongo

To quickly search, �lter and retrieve tweets we store them in an instance of
the MongoDB database. MongoDB is a so-called NoSQL database that is
easy to use especially for data like a tweet where metadata is stored in a
structured and "attribute: value"-style format known as JSON.
Using the PyMongo distribution, which contains tools making it possible
to work with MongoDB in Python. We chose MongoDB mainly because
it made it easy to save the data as it is, and read each Tweet from the
database, without actually changing the structure of the Tweet. If we had
used one of the more popular SQL databases, e.g. MySQL, we would have
had to extract each part of each Tweet, inserting them into the correct places
in the database. Also it would have meant the creation of multiple tables,
since each Tweet does not necessarily contain the same number of parameters.
MongoDB creates its parameters on the �y, and scales for each Tweet, making
it ideal for our purpose.

Since our remote server, which mined all data, wasn't able to run Mon-
goDB we had to do all steps of the analysis on a local machine, meaning
everything that had something to do with MongoDB.

3.5 Storing Tweets in MongoDB

We chose to store the collected Tweets in MongoDB for the ease of use, and
because the Tweets we collected from the Twitter Streaming API outputted
Python Dictionaries, which works perfectly in combination with MongoPy
(the Python implementation of MongoDB).
We were able to just insert the whole dictionary into MongoDB, and af-
terwards being able �nd each Tweet, as it was given to us by the Twitter
Streaming API. This extract-and-insert approach was handled by script sim-
ple �le-to-db-script.

The script is simple, and is made simply to extract the Tweets from the
�les to the database, to make the data easier to work with. It simply goes
through every �le in a directory, and for each �le insert each line into the
database using PyMongo's build-in insert() method.

7

3.6 Pre-analysis

The pre-analysis, or rather the generation of the numbers of data was handled
by a pre-analysis script written in Python, and is made as a script to run
through all the Tweets stored in the MongoDB instance. The script is given
the same keywords as used to �lter the Twitter Stream in the mining script,
and saves several informations about the data during runtime:

• Total count of Tweets.

• The score of a Tweet, using the mathematical model.

• Highest and lowest score of a Tweet.

• Total scores of keyword.

• Total score of keyword for each day.

• Total number of Tweets for each keyword.

• Total number of Tweets for each keyword for each day.

• Average score per Tweet for each keyword.

For the sake of convenience, the script writes all the above computed num-
bers to a text �le. Ideally these numbers could also be used for other things,
for example auto-generation of graphs, however this is not implemented at
the moment.2

The script is rather static, but could have been made more dynamic
for the sake of scalability and ease of using the script for analysing other
types of tweets, e.g. other keywords, over longer periods of time and more
calculations. Nevertheless the script is kept as simple as possible, making it
easy to use di�erent mathematical models on the Tweets or change anything
else regarding the analysis.

2See the Future work and Improvements section 6

8

3.6.1 How it works

The pre-analysis script runs through all Tweets in a MongoDB instance, and
analyse each Tweet, giving it a score, count keyword up, and so on.

Although, since our mathematical model uses the number of favorites
and number of retweets as parameters to calculate the score of a Tweet, it is
not possible to take these two parameters from any Tweet from the stream
directly. The problem is that the Twitter Streaming API streams the data
in real-time, meaning that none of the Tweets would contain any count of
Retweets nor Favorites. Fortunately if a Tweet is a Retweet, parameters are
passed, giving access to the original posts number of favorites and retweets,
at the time of the Retweet. Because of this, the script �lters to only get
Retweets, and no original Tweets.

Another �lter in the script is to only get Tweets from users with a Fol-
lowers count and Following count both above zero, as our mathematical uses
these two parameters to calculate the "Impact" of a user. If a user doesn't
have any followers, the user can't have any impact, and should not be used
for generating the statistics.

3.7 Analysis

To guarantee the reliability of the tools we have used in the project, we had
to run some tests on the di�erent methods. We ran all our data through our
mathematical model:

Tweets∑
N=1

: (Polarity · Subjectivity) ·
((

Followers

Following

)
+

(
Favorites

2

)
+ (Retweets)

)
Polarity and Subjectivity in this matter comes from Sentiment-Analysis TextBlob,
Rating the content of the data written in the real post on Twitter. It looks
at how much opinion a tweet has rating it from zero to one, and also gives
it a score from minus one to one, looking at the positivity/negativity rating
in the post. The rest can be split up in rating the post itself, and rating the
user. Here the relationship between a users followers/following is the user
rating, and favorites/retweets is used to up the score of the post itself.

9

4 Results

4.1 Testing

Before starting our analysis we needed to collect a couple of various tools
and features to look at when doing it.
For this we chose a sentiment analysis, and some meta-data. Looking at the
tests in general we got a good picture of how we wanted the �nal model to
look like, and how it should be done. A lot of factors was not really known to
us before starting the tests we ran on every part of the mathematical model
in parts.

4.2 Features and Modeling

Features in Data Mining is the attributes and values you use to state how you
rate the content of the data. for looking at this, we selected a good working
Sentiment analysis and a few of the datas stored from the Twitter API in the
meta-data of a tweet, everytime we get one. For getting a realistic picture of
this, we are weighting the features di�erently corrosponding to how much it
means for the data, and how much they individually has meaning.

4.2.1 Sentiment-Analysis

Our Sentiment Analysis tool TextBlob3 output the parameters subjectivity
and polarity. The subjectivity has a range of [0.0; 1.0] and indicates how much
opinion there is in a text. The polarity has a range of [−1.0; 0.0; 1.0] which
indicates whether the opinion is negative, neutral or positive.

We are weighting the polarity along with the subjectivity by multiplying
them, and from this we get a sentiment. This sentiment is then used to give
the tweet an in�uence score with either a negative or positive polarity. A
neutral sentiment would nullify the tweet's in�uence score.
Some basic statistics we got from our sentiment analysis by analyzing a
sample of some 15,000 tweets from our data set:

On the subjectivity:

• Around 40% of the tweets have a subjectivity of 0.0 or in other words
they're neutral or "opinionless" according to TextBlob.

• 60% of the tweets have a subjectivity above 0.0.

• 48% of the later tweets have a subjectivity of 0.5 or above.

3A module for the Python programming language

10

On the polarity:

• Around 51% of the tweets have an absolute (either positive or negative)
polarity above 0.0.

• 39% of the tweets have a positive polarity above 0.0.

• 12% of the tweets have a negative polarity below 0.0.

As can be seen above a good amount of the tweets are without any opinion
according TextBlob. However the majority of tweets seem to have some kind
of opinion. This is likely because many people mentioning "Ubuntu", "OS X"
or "Windows" are more likely to do it when they mention a speci�c opinion
about these products.

4.2.2 Features from metadata

From the metadata we get from each tweet we can look at the three following
types of relationships on each post/user, to get a better insight on how to
rate it:

Retweets: A Retweet does not just show that other users in general likes
the post the corresponding user has posted, but also wants their entire
audience to see the post as well. Its a great thing to look at, and is
weighing a lot in the �nal score, because it de�nes that the content in
the post is either good or bad, and the user agrees with it.

Favorites: Adding a post to favorite's is like saying that the corresponding
person likes the thing he favorited. Although a user does this and agrees
or likes the post, it does not weigh as much as a Retweet, because it
does not show that the user wants his audience to see it too.

Followers/following: Looking at this form of data, were not just looking at
the post itself like with the other features, but we are making a rating
for the user posting the tweets reliability. a bigger audience given from
the users followers will give a higher rating.

4.2.3 Weighting the features

To get a better view on whats important and not important in the dataset,
we have been looking at how to weigh the features we have selected. All
features is a key part of the �nal analysis, but some have more meaning to
be looking at than others. For example, a Retweet is showing that a Person

11

not only likes the post he has seen, but also wants his entire audience to see
it and rate it too. Di�erent from Favorites that does not show on his own
posts, but only show that he likes the post. We decided that Favorites would
have only half the meaning that a Retweet has, and therefore divided it by
two in the �nal analysis.
Looking at the user, we went through various testings on how to rate this.
While PageRank4 not being an option at hand, we went on and found out
that taking the relationship between a users followers and the people he is
following, would give the best overall picture of his reliability rating.

4.3 Data Collection

Our �nal data set contains 183388 tweets and the tweet scores based on
our model is in the interval [−14396; 74829] both endpoints being rather
extremes.

4Refering to Future work and improvements section 6

12

4.3.1 Distribution of keywords

Figure 1: Distribution of collected keywords (total)

On Figure 1 we can see that Windows gets tweeted about the most, with
the keyword contained in 92.73% of the tweets. OSX appears in 5.07% of
the tweets, while Ubuntu only appears in 2.2% of the tweets. According to
several other sources specializing in market shares in technology5, the shares
of OS X, Windows and Ubuntu, is a close match of the data presented in Fig-
ure 1. Concluded from this, the data collected most likely resembles real-life,
and gives a reliable impression on what people think of some of the operating
systems on the market.

5netmarketshare Desktop Operating System Market Share, May 2014

13

Keyword:
% of Ubuntu 2.20%
% of Windows 92.73%
% of OSX 5.07%

4.3.2 Distribution of keywords over 5 day period

Figure 2: Distribution of collected keywords over 5 day period

Figure 2 gives an impression on how total count of keywords from Figure 1
was distributed over the time of the data collection. As can be seen, Ubuntu
is somewhat stable, with a average of 241 tweets per day, and with a low
range from the highest count, to the lowest. OSX is increasing a bit for each
day, which could mean an increasing interest, but is most likely because of
a temporary interest on the subject. This could be in�uenced by a certain

14

post, for example a share of a media article involving OSX, being retweeted
a lot of times.

However, the most noteworthy thing about Figure 2, is that Windows is
decreasing. We aren't sure of the reason to this decrease in interest, but it
is possible that an controversy about an update deadline on May 136, and
the release of new updates on May 167 have triggered a sudden increase in
the interest of Windows, which have, while we collected the data, started to
decrease again.

Keywords count: 1 2 3 4 5 Total hits/key
Ubuntu 363 205 145 270 223 1206
Windows 15612 11123 8521 8146 7484 50886
OSX 388 450 505 648 791 2782
Total keywords/day 16363 11778 9171 9064 8498 54874

6Softpedia.com, One Day Before the Deadline, Some Users Still Can't Install Windows
8.1 Update, May 12, 2014

7Infoworld.com, Microsoft acknowledges more errors, 80070371 and 80071A91, when
installing Windows 8.1 Update/KB 2919355, May 16, 2014

15

4.3.3 Total scores

Figure 3: Distribution of the scores on the di�erent keywords

Figure 3 shows the results of the Tweet's score after they were run through our
model. Not surprisingly, Windows got the highest overall score with 71.5%,
but with the fact in mind that Windows was represented by 92.73% of the
tweets, this score is rather low. Ubuntu however, which was represented by
only 2.2% of the tweets, got a score above 22%, after being run through our
model.

16

Total scores:
Ubuntu 22610
Windows 73455
OSX 6676
Sum of scores: 102741
% of Ubuntu 22.01 %
% of Windows 71.5%
% of OSX 6.5%

4.3.4 Average score per tweet

Figure 4: Distribution of the average score of tweets on the given keyword

What isn't surprising about Figure 3 is that Windows, while being the
most mentioned of the keywords in our dataset, is the most popular according

17

to our model. However, Figure 4, which shows the average score per tweet on
the speci�c keyword, tells a whole di�erent story. Figure 4 clearly shows that
even though Ubuntu was the least mentioned of the keywords in our dataset,
the tweets are generally a lot more positive than the tweets regarding OSX
and Windows.

Does this mean that Ubuntu users are generally happier with their op-
erating system than users of OSX and Windows? There could be several
�aws with this theory. One is that, as mentioned earlier, Windows' recently
controversy about their recent update could have led to lower average score
per tweet, because of a lower sentimental score of the tweets. Another theory
could be the on-going war between Microsoft and Apple, which means tweets
of Windows users criticizing OSX and vice versa.

However, we have concluded that users of Ubuntu probably is happier
with their operating system, or is at least more eager to share their satisfac-
tion on Twitter, than the users of OSX and Windows. While the mentioned
problems with this theory may have had an in�uence on the dataset, it's
di�cult to acknowledge the huge di�erence in the distribution of the average
score of tweets, on the di�erent keywords.

Average scores:
Ubuntu 18.75
Windows 1.44
OSX 2.40
Average: 7.53

18

4.3.5 Average Tweet score over time

Figure 5: The average score (in thousands) of the tweets on the given key-
words over the 5 day mining period.

Figure 5 gives a more detailed view of the things stated by Figure 4. This
shows that the tweets mentioning Ubuntu, in the 5 day mining period, had a
general higher average score, than the tweets mentioning OSX and Windows,
every day of mining period. The average score of the tweets mentioning
OSX was the most stable, while Windows was the most unstable from day to
day. The reason why Windows was the most unstable, could also have had
something to do with the aforementioned Windows controversy.

19

5 Conclusion

The results of the project has shown that the distribution of tweets men-
tioning products within the same category can be very close to the actual
market shares of these products. Looking at the model we have derived that
it is appropriate to look at how several products within the same category
is mentioned on Twitter although it can also be used on a single product to
show whether the product is overall positively or negatively mentioned.

Based on our model and results it seems likely that this can be used as
a replacement for product rating websites, due to the fact that the results
is made entirely from the posts the users makes themselves. Looking at our
comparison of operating systems, the representation of tweets mentioning
Windows is clearly the largest, compared to the other two, but as seen in
our results, this does not necessarily have any in�uence on the rating of the
product.

20

6 Future work and Improvement

Many things were discussed during the time of our project, and unfortunately
we didn't have time to implement everything we talked about. Some of the
most interesting ideas, that we did not have time to implement is:

Implementation of the Page Rank Algorithm Rating the user who wrote
a Tweet depending on the rating of his/hers followers.

Auto-generated graphs Implementation of python-gnuplot or matplotlib
to automatically create graphs of the generated data.

Make the pre-analysis script more scalable Make pre-analysis script more
scalable, for use on e.g. other Tweets or over a user-de�ned period of
time.

21

References

[1] Netmarketshare.com
Desktop Operating System Market Share, May, 2014
http://www.netmarketshare.com/operating-system-market-
share.aspx?qprid=10&qpcustomd=0&qpcustomb=

[2] Infoworld.com
Microsoft acknowledges more errors, 80070371 and 80071A91, when
installing Windows 8.1 Update/KB 2919355, May 16, 2014
http://www.infoworld.com/t/microsoft-windows/microsoft-
acknowledges-more-errors-80070371-and-80071a91-when-installing-
windows-81-updatekb-2919355-2426?source=rss_infoworld_blogs

[3] Softpedia.com
One Day Before the Deadline, Some Users Still Can't Install Windows
8.1 Update, May 12, 2014
http://news.softpedia.com/news/One-Day-Before-the-Deadline-Some-
Users-Still-Can-t-Install-Windows-8-1-Update-441744.shtml

[4] Matthew A. Russell
Mining the Social Web, October 2013, O'Reilly

[5] Matthew A. Russell
21 Recipes for Mining Twitter, January 2011, O'Reilly

[6] Gundecha, Pritam and Huan Liu
Mining social media: A brief introduction, 2012, Tutorials in Operations
Research

[7] Twitter Developer API Documentation
http://dev.twitter.com/docs, Twitter API General Documentation
http://dev.twitter.com/docs/api/streaming, Twitter Streaming-API
Documentation

22

http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qpcustomb=
http://www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&qpcustomd=0&qpcustomb=
http://www.infoworld.com/t/microsoft-windows/microsoft-acknowledges-more-errors-80070371-and-80071a91-when-installing-windows-81-updatekb-2919355-2426?source=rss_infoworld_blogs
http://www.infoworld.com/t/microsoft-windows/microsoft-acknowledges-more-errors-80070371-and-80071a91-when-installing-windows-81-updatekb-2919355-2426?source=rss_infoworld_blogs
http://www.infoworld.com/t/microsoft-windows/microsoft-acknowledges-more-errors-80070371-and-80071a91-when-installing-windows-81-updatekb-2919355-2426?source=rss_infoworld_blogs
http://news.softpedia.com/news/One-Day-Before-the-Deadline-Some-Users-Still-Can-t-Install-Windows-8-1-Update-441744.shtml
http://news.softpedia.com/news/One-Day-Before-the-Deadline-Some-Users-Still-Can-t-Install-Windows-8-1-Update-441744.shtml
http://dev.twitter.com/docs
http://dev.twitter.com/docs/api/streaming

	Table Of Contents
	Introduction
	Problem Formulation

	Methods
	Data Mining in general
	Twitter API

	Storing and Retrieving
	VPS-Server

	Mining Tweets
	About MongoDB and PyMongo
	Storing Tweets in MongoDB
	Pre-analysis
	How it works

	Analysis

	Results
	Testing
	Features and Modeling
	Sentiment-Analysis
	Features from metadata
	Weighting the features

	Data Collection
	Distribution of keywords
	Distribution of keywords over 5 day period
	Total scores
	Average score per tweet
	Average Tweet score over time

	Conclusion
	Future work and Improvement

